Table of Contents

Information for Educators

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>About this Curriculum</td>
<td>5</td>
</tr>
<tr>
<td>National Science Education Standards</td>
<td>6</td>
</tr>
</tbody>
</table>

Lesson Modules

I. The Science Behind Bt Crops

BACKGROUND INFORMATION FOR EDUCATORS

The nature of Bt .. 7
Overview of genetic engineering .. 7
Tissue culture and transformation .. 9

TEACHING RESOURCES

Laboratory lesson plan: Fruit Cup DNA Extraction ... 13
PowerPoint® tutorial .. 15
Internet ideas ... 15
Student handout: *See For Yourself – DNA Extraction* .. 17

Laboratory lesson plan: DNA Transformation of Bacteria 21
PowerPoint® tutorial .. 26
Internet ideas ... 26
Student handout: *Learning More About Bacillus thuringiensis* 27
Student handout: *Learning More About Tissue Culture* .. 31
Student handout: *See For Yourself – Bacterial Transformation* 35
Overhead transparency masters ... 39

II. Insect-Resistant Crops Using Bt

BACKGROUND INFORMATION FOR EDUCATORS

Bt corn .. 55
III. Production Issues for Bt Crops

BACKGROUND INFORMATION FOR EDUCATORS

Economic trade-offs .. 91
Refuges .. 91

TEACHING RESOURCES

Lesson plan: The Economics of Growing Bt corn ... 95
Internet ideas .. 108
Student handout: Learning More About the Economics of Growing Bt Crops 109
Student handout: See For Yourself – Example: Consider the Costs 111
Student handout: See For Yourself – Consider the Costs .. 115
Overhead transparency masters ... 131

Lesson plan: Refuge Roundtable ... 173
Internet ideas .. 176
Student handout: Learning More About Insect Resistance to Bt 177
Student handout: See For Yourself – The Mating Game .. 179

Lesson plan: Locating Refuges – Insect Hotels ... 183
Internet ideas .. 184
Student handout: Learning More About Locating Refuges 187
Student handout: See For Yourself – Locating Refuges: Insect Hotels 191
Overhead transparency masters ... 197
IV. Ethical, Social, and Legal Issues of Bt Crops

BACKGROUND INFORMATION FOR EDUCATORS

The Bt issues .. 225
Some questions .. 226

TEACHING RESOURCES

Lesson plan: The Customer Is Always Right ... 227
Internet ideas.. 230
Student handout: Learning More About Ethical, Social, and Legal
Bt Issues ... 237
Student handout: See For Yourself – The Customer Is Always Right: Who
Will Buy This Grain? .. 241
Overhead transparency masters .. 249

Lesson plan: Building and Evaluating Ethical Arguments 271
Internet ideas.. 274
Student handout: Learning More About Ethics .. 275
Student handout: See For Yourself – Ethical Arguments: Building and
Evaluating Ethical Arguments ... 279
Student handout: See For Yourself – A Matter of Ethics: To Plant
or Not to Plant ... 281
Overhead transparency masters .. 285

Appendices

Evaluation .. 317
Glossary ... 319
Resources for Educators ... 321
Acknowledgments

This curriculum was written with the support of a grant from the U.S. Department of Agriculture. In the fall of 2000, the Initiative for Future Agriculture and Food Systems (IFAFS) program of the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, awarded a grant to nine land-grant institutions in Minnesota, North Dakota, South Dakota, Iowa, and Wisconsin to address the economic, ethical, and social aspects of agricultural biotechnology.

Bacillus thuringiensis: *Sharing Its Natural Talent With Crops* was prepared by the Iowa State University (ISU) Office of Biotechnology and published with the assistance of the ISU Extension – Science, Engineering, and Technology (E-SET) Program. The following individuals and organizations who contributed information, time, or expertise to the project are gratefully acknowledged:

Curriculum Editor and Author
Glenda Webber, Communications Specialist, ISU Office of Biotechnology

Science Editor and Author
Michael Zeller, Biotechnology Outreach Education Coordinator, ISU Office of Biotechnology

Ethics Editor and Author
Kristen Hessler, Bioethics Outreach Coordinator, ISU Office of Biotechnology; Lecturer, ISU Cooperative Extension and Department of Philosophy

Reviewing Editors
Walter Fehr, Charles F Curtiss Distinguished Professor in Agriculture and Director, ISU Office of Biotechnology
Robert Martin, Professor and Chair, ISU Department of Agricultural Education and Studies
Jay Staker, Program Director, ISU Extension – Science, Engineering and Technology (E-SET); Associate Director, Iowa Space Grant Consortium
Arlene D’Souza, Biotechnology Intern, ISU Office of Biotechnology

Permission Grantors
Center for Life Sciences and Department of Soil and Crop Sciences at Colorado State University
Don Lee, University of Nebraska Crop Technology Web Site
EnviroLogix, Inc.
Environmental Protection Agency, Biopesticides and Pollution Prevention Division
Iowa State Press
Iowa State University Extension
Jeffrey Hyde, The Pennsylvania State University; Marshall A. Martin, Paul V. Preckel, and C. Richard Edwards, Purdue University
Kristen Hessler, ISU Office of Biotechnology and Cooperative Extension
National Academy Press of the National Academy of Sciences
North Carolina Cooperative Extension Service
University of Minnesota Extension Service
Walter Fehr, ISU Office of Biotechnology

Cover Photos
Front cover photos: European corn borer by Keith Weller, ARS-USDA (left). Cotton bollworm by Scott Bauer, ARS-USDA (right). Back cover photomicrograph and CD label art based on: Gram stain of *Bacillus thuringiensis* cells provided by Brent Selinger, University of Lethbridge, Lethbridge, Alberta, Canada.

This material is based upon work supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, under Agreement No. 00-52100-9617. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors, editors, and reviewers and do not necessarily reflect the view of the U.S. Department of Agriculture.
About This Curriculum

This curriculum introduces advanced middle school or high school students to Bt crops, such as corn and cotton, into which DNA from the naturally-occurring soil bacterium *Bacillus thuringiensis* has been incorporated to produce resistance to certain insects.

This unit is intended for use with students and educators in science, nutrition, agriculture, or family and consumer sciences. Teachers are encouraged to involve language, math, speech, and other instructors in the interdisciplinary activities. Extension educators may find these materials useful for their youth and adult audiences.

Through four lesson modules, participants in the activities learn about

- the biotechnology science behind Bt crops,
- specific Bt crops,
- production issues for farmers and processors, and
- ethical, legal, and social issues related to Bt crop production.

Using an inquiry-based approach and the experiential learning model illustrated below, participants conduct “See For Yourself” activities that reinforce the science principles being taught. The Teacher/Leader information for each activity includes the science content and how it relates to the National Science Education Standards, as well as the science process skills.

Experiential Learning Model

1. **Experience**
 - the activity; perform, do it

2. **Share**
 - the results, reactions, and observations publicly

3. **Process**
 - by discussing, looking at the experience; analyze, reflect

4. **Generalize**
 - to connect the experience to real world examples

5. **Apply**
 - what was learned to a similar or different situation, practice

Iowa State University Extension and ISU Office of Biotechnology
National Science Education Standards and Associated Concepts and Principles

All activities in this curriculum relate to Content Standard A, Science as Inquiry, as developed by the National Research Council. Some activities also relate to Content Standard B, Physical Science; Content Standard C, Life Science; or Content Standard F, Science in Personal and Social Perspectives. To help educators locate the standards and underlying concepts and principles cited for each activity, the page number and first sentence or two of the applicable principle are cited in the “Science Education Standards” section of the instruction pages for teachers and leaders. All page numbers refer to the seventh printing of the National Science Education Standards, November 1999. The National Science Education Standards are also available on the Internet at http://books.nap.edu/html/nses/pdf/index.html.

Content Standard A – Science as Inquiry
As a result of activities in this curriculum, students in grades 9-12 should develop

• abilities necessary to do scientific inquiry
 – identify questions and concepts that guide scientific investigations
 – design and conduct scientific investigations
 – use technology and mathematics to improve investigations and communications
 – formulate and revise scientific explanations and models using logic and evidence
 – recognize and analyze alternative explanations and models

• understanding about scientific inquiry
 – scientists conduct investigations to
 1. explain new discoveries
 2. test conclusions
 3. explain observed phenomena

Content Standard B – Physical Science
As a result of activities in this curriculum, students in grades 9-12 should develop an understanding of chemical reactions.

Content Standard C – Life Science
As a result of activities in this curriculum, students in grades 9-12 should develop an understanding of

• the cell
• the molecular basis of heredity
• interdependence of organisms
• biological evolution
• matter, energy, and organization in living systems
• behavior of organisms

Content Standard F – Science in Personal and Social Perspectives
As a result of activities in this curriculum, students in grades 9-12 should develop an understanding of

• personal and community health
• population growth, specifically natural populations of insect pests
• natural resources
• environmental quality, specifically natural ecosystems
• natural and human-induced hazards
• science and technology in local, national, and global challenges