Table of Contents

Information for Educators

Acknowledgments .. 4
About this Curriculum ... 5
National Science Education Standards ... 6

Lesson Modules

I. Genetics According to Mendel

PART I – BACKGROUND INFORMATION FOR EDUCATORS
The nature of Mendel’s discovery ... 8
Mendel’s rule of segregation ... 8
Mendel’s rule of independent assortment .. 9

PART I – TEACHING RESOURCES
Lesson plan: Punnett Squares ... 12
Student handout: Learning More About Genetics According to Mendel 17
Student handout: See for Yourself – Punnett Squares – Monohybrids 23
Student handout: See for Yourself – Punnett Squares – Dihybrids 25
Overhead transparency masters ... 27

PART II – BACKGROUND INFORMATION FOR EDUCATORS
What is a pedigree? .. 45
Pedigree analysis .. 45

PART II – TEACHING RESOURCES
Lesson plan: Pedigrees .. 47
Student handout: Learning More About Pedigrees ... 49
Student handout: See for Yourself – What Are the Chances? 53
Overhead transparency master .. 55

(continues)
II. Marker Assisted Selection (MAS)

PART I AND PART II – BACKGROUND INFORMATION FOR EDUCATORS

- MAS introduction ... 57
- Molecular markers .. 57
- Marker assisted selection .. 58
- The role of polymerase chain reaction (PCR) in MAS.................................. 59
- DNA sequencing .. 62
- Sire Osborndale Ivanhoe: The story of bovine leukocyte adhesion deficiency (BLAD) .. 62

PART I – TEACHING RESOURCES

- **Lesson plan:** Student Exercise on Polymerase Chain Reaction 68
- Student handout: Learning More About Marker Assisted Selection (MAS) 73
- Student handout: See for Yourself – Polymerase Chain Reaction (PCR) 81
- Student handout: Learning More About BLAD and Sire Osborndale Ivanhoe .. 85
- Overhead transparency masters .. 91

PART II – TEACHING RESOURCES

- **Lesson plan:** Agarose Gel Analysis of the K-Casein B Allele 117
- Student handout: Learning More About the K-Casein B Allele in Cattle 131
- Student handout: See for Yourself – Agarose Gel Analysis of the K-Casein B Allele .. 133
- Overhead transparency masters .. 147

III. Ethical Issues

PART I – BACKGROUND INFORMATION FOR EDUCATORS

- Empirical claims, ethical claims, and ethical conclusions 153

PART I – TEACHING RESOURCES

- **Lesson plan:** Building and Evaluating Ethical Arguments 153
- Student handout: Learning More About Ethics ... 157
- Student handout: See for Yourself – Ethical Arguments 161
- Student handout: See for Yourself – A Matter of Ethics 163
- Overhead transparency masters .. 167

PART II – BACKGROUND INFORMATION FOR EDUCATORS

- Pre-implantation genetic diagnosis introduction 195
Ethical issues ... 196
Eugenics .. 196
Genetic counseling .. 197

PART II – TEACHING RESOURCES

Lesson plan: Ethics Review Board Role Play .. 198
Student handout: Learning More About Pre-implantation Genetic Diagnosis ... 201
Student handout: See For Yourself – Ethics Review Board Role Play 205
Overhead transparency masters .. 213

Appendices

Evaluation ... 223
Glossary ... 225
Acknowledgments

This curriculum was written with the support of a grant from the U.S. Department of Agriculture. In the fall of 2000, the Initiative for Future Agriculture and Food Systems (IFAFS) program of the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, awarded a grant to nine land-grant institutions in Minnesota, North Dakota, South Dakota, Iowa, and Wisconsin to address the economic, ethical, and social aspects of agricultural biotechnology.

From Mendel to Markers was prepared by the Iowa State University (ISU) Office of Biotechnology and published with the assistance of the ISU Extension – Science, Engineering, and Technology (E-SET) Program. The following individuals and organizations who contributed information or expertise to the project are gratefully acknowledged:

Science Editor and Author
Michael Zeller, Biotechnology Outreach Education Coordinator, Office of Biotechnology, Iowa State University

Ethics Editor and Author
Kristen Hessler, Bioethics Outreach Coordinator, Office of Biotechnology, Iowa State University

Curriculum Editor
Glenda Webber, Program Coordinator, Office of Biotechnology, Iowa State University

Reviewing Editors and Contributors
Walter Fehr, Charles F. Curtiss Distinguished Professor in Agriculture and Director, Office of Biotechnology, Iowa State University
Marcus E. Kehrli, Jr., DVM, PhD, Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS
Robert Martin, Professor and Chair, Department of Agricultural Education and Studies, Iowa State University
Kim Oltrogge, Intern, Biotechnology Outreach Education Center, Office of Biotechnology, Iowa State University
Jay Staker, Program Director, ISU Extension – Science, Engineering and Technology (E-SET); Associate Director, Iowa Space Grant Consortium

Permission Grantors
Marcus E. Kehrli, Jr., DVM, PhD, Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS
National Academy Press of the National Academy of Sciences

Cover Photos
Front cover photos, top to bottom: Corn by Keith Weller, ARS-USDA. Cattle by Scott Bauer, ARS-USDA. Chicks by Peggy Greb, ARS-USDA. Woman and baby by Peggy Greb, ARS-USDA. Back cover photos by same photographers.

This material is based upon work supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, under Agreement No. 00-52100-9617. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors, editors, and reviewers and do not necessarily reflect the view of the U.S. Department of Agriculture.
About This Curriculum

This curriculum introduces advanced middle school and high school students to how molecular markers are being used to improve traditional plant and animal breeding and diagnose genetic diseases in all organisms. The curriculum consists of three modules that are meant to connect teachers and students with the critical technologies that have led to the widespread use of molecular markers and their social, economic, and ethical implications. One application of these molecular technologies, marker assisted selection (MAS) will be featured in module II.

This curriculum is written in such a way that educators can use it as a complete genetics unit or implement modules independently within their course or unit on genetics. This curriculum is intended for use with students and educators in science, nutrition, agriculture, or family and consumer sciences. Teachers are encouraged to involve language, math, speech, and other instructors in the interdisciplinary activities. Extension educators may find these materials useful for their youth and adult audiences.

Through three lesson modules, participants in the activities learn about

- genetics according to Mendel,
- marker assisted selection, and
- ethical issues associated with diagnosis of genetic diseases

Using an inquiry-based approach and the experiential learning model illustrated below, participants conduct “See For Yourself” activities that reinforce the science principles being taught. The educator information for each activity includes the science content and how it relates to the National Science Education Standards, as well as the science process skills.

![Experiential Learning Model](image-url)
National Science Education Standards and Associated Concepts and Principles

All activities in this curriculum relate to Content Standard A, Science as Inquiry, as developed by the National Research Council. Some activities also relate to Content Standard B, Physical Science; Content Standard C, Life Science; Content Standard F, Science in Personal and Social Perspectives; or Content Standard G, History and Nature of Science. To help educators locate the standards and underlying concepts and principles cited for each activity, the page number and first sentence or two of the applicable principle are cited in the “Science Education Standards” section of the instruction pages for teachers and leaders. All page numbers refer to the seventh printing of the National Science Education Standards, November 1999. The National Science Education Standards are also available on the Internet at http://books.nap.edu/html/nses/pdf/index.html.

Content Standard A – Science as Inquiry
As a result of activities in this curriculum, students in grades 9-12 should develop

- abilities necessary to do scientific inquiry
 - identify questions and concepts that guide scientific investigations
 - design and conduct scientific investigations
 - use technology and mathematics to improve investigations and communications
 - formulate and revise scientific explanations and models using logic and evidence
 - recognize and analyze alternative explanations and models

- understanding about scientific inquiry
 - scientists conduct investigations to
 1. explain new discoveries
 2. test conclusions
 3. explain observed phenomena

Content Standard B – Physical Science
As a result of activities in this curriculum, students in grades 9-12 should develop an understanding of chemical reactions.

Content Standard C – Life Science
As a result of activities in this curriculum, students in grades 9-12 should develop an understanding of

- the cell
- the molecular basis of heredity
- interdependence of organisms
- biological evolution
- matter, energy, and organization in living systems
- behavior of organisms

Content Standard E – Science and Technology
As a result of activities in this curriculum, students in grades 9-12 should develop an understanding of

- abilities of technological design
- understandings about science and technology

Content Standard F – Science in Personal and Social Perspectives
As a result of activities in this curriculum, students in grades 9-12 should develop an understanding of

- personal and community health
- population growth
- natural resources
- environmental quality, specifically natural ecosystems
- science and technology in local, national, and global challenges
Content Standard G – History and Nature of Science

As a result of activities in this curriculum, students in grades 9-12 should develop an understanding of

• science as a human endeavor
• nature of scientific knowledge
• historical perspectives